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Abstract. The quantum groufsL, (2, R) at roots of unity is introduced by means of duality
pairings with the quantum algebtg, (s/(2, R)). Its irreducible representations corresponding to
the B type of the quantum algebra are constructed through the univenseltrix. The irreducible
representations corresponding to théype are also found. An invariant integral on this quantum
groupis given. Endowed with that some properties like unitarity and orthogonality of the irreducible
representations are discussed.

1. Introduction

One of the most interesting features of the quantum alg€p¢e (2)) which does not possess

a classical analogue is the finite-dimensional cyclic irreducible representation which appears
wheng is a root of unity [1-5]. Indeed, cyclic representations appear in different physical
applications like the generalized Potts model [6] and in classification of quantum Hall effect
wavefunctions [7].

A geometric understanding of this feature is lacking due to the fact that structure of the
related quantum groufL,(2) at roots of unity is not well established, although there are
encouraging results in this direction [8,9]. Whgis not a root of unity§ L, (2) andU, (s/(2))
are duals of each other [10, 11]. Hence, it would be reasonable to extend this property to
obtainSL,(2) wheng is a root of unity. However, this is not straightforward, because when
g is a root of unity the usual dual brackets become ill-defined. To cure this shortcoming one
should alter the usual number of variables taking part in the duality relations. One can then
define the quantum groupL, (2) at roots of unity. Obviously, this fact should be reflected
in U, (s1(2)) at roots of unity such that the number of variables needed to define it should be
changed consistently.

Our aim is to clarify the construction 6fL,, (2) at roots of unity as a dual &f, (s/(2)) and
study them in terms of the usual representation theory techniques. Because of the involutions
adopted, we work witt§ L, (2, R) andU, (s/(2, R)).

In the following we first discus®/, (s!/(2, R)) andSL, (2, R) for a generig; in terms of
some new variables which are suitable to define orthogonal duality pairings. Then, we discuss
degeneracies arising in dual brackets when we deal g¥itk= 1 for an odd integep and
present a procedure for getting rid of them. This yields the definitifZgi(2, R) at roots of
unity, whose subgroups are also studied.
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1896 H Ahmedov an® F Dayi

Once the concepts are clarified we first study irreducible representati@ngsgt2, R))
and then work out the univers@l-matrix. These representations as well as Thmatrix,
are utilized to find out irreducible representationsS@f, (2, R) at roots of unity. Finally, we
give the definition of invariant integral ofiL, (2, R) and discuss the related structure of the
representations like unitarity and orthogonality.

2. Uy(sl(2,R)) and SL,(2, R) for a genericq

The quantum algebrd, (s/(2, R)) is the x-Hopf algebra generated by, and K= which
satisfy the commutation relations

KE.Kt=¢*E, [E+, E_] = KZ_—K_;Z (2.1)
q9—4

the comultiplications

AEy)=E:@K+K1®E. AK)=K®K (2.2)
the counits, the antipodes

e(K)=1 €(Ey) =0 (2.3)

S(Ky=K™  S(Es)=—q"'Es (2.4)
and the involutions

EX =E4 K*=K. (2.5)

The quantum grouL, (2, R) is thex-Hopf algebrad(SL, (2, R)) generated by, y, u
andv satisfying the commutation relations

Ux = qxu VX = gxv yu = quy

yv = quy Uv = vu YX — quv = Xy — qiluv =1 (2.6)
the comultiplications

Ax=xQx+u®vu Au=xQu+u®y 2.7)

AV=vQR@x+yQ®uv Ay=vQu+y®y
the counits, the antipodes

ex)=1 e(y)=1 e(u) =0 e(v) =0 (2.8)

Sw=y  SMH=x  Sw=—qu  SW)=—q N (2.9)
and the involutions

xf=x yi=y u=u vi = (2.10)

The involutions adopted (2.10) and the Hopf algebra operations (2.6)—(2.9) jmphy1.
Assume that there existserepresentation od (SL, (2, R)) such thak admits the inverse
x~1 and the equality

o0

La+g u) ™ =) (=D g uw) (212)
k=0

holds. 1; and I, indicate the unit elements of the related Hopf algebras.
Then we introduce the new variables

ne =q Yux n- = qY%vxt § = x? (2.12)
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dictated by the Gauss decomposition

xou\ 1, 0\ /[1a q¥n:\(8Y2 O
(v y>_<q_1/2n 1A)(0 1 0 4§12 (2.13)

satisfying the commutation relations

N-ns = q°nen— N = q°8n.. (2.14)
The involutions (2.10) yield
ny =1+ 8" =34. (2.15)

Through the equality (2.11) we can define the following Hopf algebra operations on these
variables:

AS=8QR8+q 25 2 @n?s+(Aa+q 2N Q@18 (2.16)

AN =12 @ Ly +3 @ ns + Ly +qOne @ nun— +q 25712 @ (La + ¢ nen_)n- (2.17)
o0

An_=n_@La+8 @n_+ ) (-Dig Vsl @ pt*t (2.18)
k=1

S©) =81 Aa +q nen-)(La +nan-) S(ne) = -8y (2.19)

e =1 e(ny) = 0. (2.20)

Wheng is not a root of unity duality relations betweéfy (s/(2, R)) and A(SL, (2, R))
are given by

(K', 87y = ¢ i,jel (2.21)
(E™, n™y = i"g*"2[n]'8m n,meN (2.22)
where
[n] = %
q9—q

is theg-number.

3. Uy(sl(2,R)) and SL,(2,R) wheng? = 1

Wheng? = 1 (we deal with ap = odd integer) for any integej we have the conditions
¢’? = 1 and [jp] = 0 so that the dual brackets (2.21) and (2.22) are degenerate. To remove
the degeneracy in (2.21) we put the restrictions

K =1y 37 =14. (3.1)
By means of these conditions and the new variables

p—1

D(m) = 1 Zqilmrsl

1=0
instead of (2.21) we have

(K", D@m)) = 8p.m n,m € [0, p —1]. (3.2)

Removing the degeneracies in (2.22) can be achieved in terms of the following two
procedures. Take, n € [0, p — 1] in (2.22). Let

nt =0 (3.3)
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but introduce the new variables

ok
=N
without any condition orE~.. In the second procedure there is no conditiom@rbut on the
generators of/, (s/(2, R)) : E£ = 0 with the new variablez, = lim,»_; % The existence
of these limitsz. andZ.. is discussed in [5, 12] and references therein.
Although, there is another way of defining new variables by setting Bdth= 0 and
n% = 0 which is studied in [9], we will show that it can be obtained as a special case in our
approach.
We deal with the restrictions (3.3) and the new variables (3.4). Now, the duality relations
are

(3.4)

(E™, q™my = i"g*"2[n] 8m n,me[0, p—1] (3.5)
and
(EL,2L) =i's18,, s,t €N (3.6)

whereé, = (—1)"7+l EL. Obviously,z.. commute with the other elements and satisfy the Hopf
algebra operations

S(z4) = —z+ €(z+) =0 4 =z4 (3.7)
r—1 k2
A= ®@Li+ L@z + Y 1t s5 @ (—g%nn_: P pnrt (3.8)
e k
Az =7z Q®1,+1, ®Z—+;mﬂf s (=nm—s g @t (3.9

where we used the notation

k
@qy=]]a-ag’™.
j=1
Let, SL,(2, R|p) denote the--Hopf algebrad(SL, (2, R|p)) generated by, ands through
the Hopf structure given by (2.14)—(2.20). Due to the restrictions (3.1) and{B 3R, R|p)
is a finite group with dimensiop?®.

When we deal with anyf(z+,z_) = f(z) € C®(R?) (the space of all infinitely
differentiable functions oiR?)

A(f(2) = f(z0) + fi(zo)es + £ (zo)e— + f1 (zo)csc— (3.10)

wherezo = (z+ ® 14 + 14 ® 7+, z- ® 14 + 14 ® z_) andc4 are given by the remaining terms
of (3.8), (3.9) which are nilpoterf = 0. Here, f/ (z0) and f’_(zo) indicate derivatives of
with respect ta . andz.z_ evaluated ato. We also have

S(f(@) = f(-2) €(f(2) = f(0) f@"=f@ (3.11)
where the overbar indicates complex conjugation.
Definition 1. SL,(2, R) at roots of unity(¢? = 1) is the C*—algebra A(SL,(2,R)) =

A(SL,(2,R|p)) x C*(R?) possessing the Hopf algebra structure given by (2.14)—(2.20)
and (3.10)—(3.11).
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Let the convolution produdt : A — V be a homomorphic map of the Hopf algebta
onto the linear space. We set

Eog=(d®&A(g) goé=(EQIdA(g) Eot=(EQEHA. (3.12)

& ogandg o & belongtoA ® V andV ® A, respectivelyg ¢ & is a homomorphic map of
AQAontoV ® V.

Obviously,SL, (2, R|p) isaninvariant subgroup 6fL, (2, R) at roots of unity. Moreover,
in terms of the homomorphisif : A(SL,(2, R)) — C*®(R?):

§(ne) =0 §(0) =1 §c(ze) =z (3.13)
one can observe that the comultiplication (3.10) yields

£ 0 &:(f(2) = f(z0)- (3.14)
Written on the coordinates,:

E.0&(z1) =7+ @ La+ 11 @z (3.15)

indicates that-Hopf algebraC>(R?) is the translation group which is a subgroup of the
SL,(2,R) at roots of unity.
There is another subgrouf0 (1, 1| p), given in terms of the homomorphism
&Mme) =0 &) =t (3.16)

wheres? = 1. The right-sided cosef{"? = SL,(2,R|p)/SO(L, 1|p) is the subspace of
A(SL,(2, R|p)) defined by

ACHY) = (g € A(SLy(2,R|p)) 1 & 0 g = g ® La}). (3.17)
One can show that
g onin"st = nin"s" @1, (3.18)

So thaty{n™, n,m € [0, p — 1] form a basis ofA(C{*"). Observe that

p—1-n_p—1-m n,,m
+
_ il n,m €0, p—1] (3.19)

+
nm 2n+1 —2n—1
Vgt g

defines a basis which is independent in the range
n €[0,ng—1] m € [0, 2n] n=ng m € [0, ng) (3.20)

e

_ . 2 2
whereno = 21, The number of independent elementsepf ande;,, are 25+ and 2.

The quantum hyperboloief{* = SL,(2,R)/SO(1, 1|p) is defined through the subspace of
A(SL,(2,R))

AHMY) = ACHY) x C2(R?). (3.21)
The homomorphism
§i(n+) =1 &(n-)=0 §@) =1 (3.22)

defines another subgroup$£, (2, R) denoted byz, (1). Its Hopf algebra structure is inherited
from that of A(SL, (2, R)). The right-sided cos&k, = SL,(2, R|p)/E, (1) is given through
the subspace

ARy ={g € A(SLy(ZR|p)) : &1 08 =8 ® 14}. (3.23)

Observe that elements of this space are polynomiajls.itWe should also define the following.



1900 H Ahmedov an® F Dayi

Definition 2. The quantum algebr&, (s/(2, R)) at roots of unity is generated #.., £+ and
K with the restrictionK ? = 1;;. Its basis elements are

ESE'EME"K* n,m,k €0, p—1] s,t e N.
Its x-Hopf algebra structure is given by (2.1)—(2.5) and
Al =601y +1y @& S(€1) = =&+ €&1) =0 & =Ex.
In terms of the homomorphis#y : U, (s1(2, R)) — U, (s1(2, R|p))
§a(Ex) = Ex §.(K) =K §a(2) =0
we can defind/, (s/(2, R| p)) the sub-Hopf algebra df, (s/(2, R)) generated by
ER =0 K? =1y.

Obviously, the discrete quantum algeliva(sl(2, R|p)) is in non-degenerate duality with
SL,(2,R|p). This is the case studied in [9].

4. Irreducible x-representations ofUy,(sl(2, R)) wheng? = 1

The homomorphisnt* : U, (sl(2)) — Lin A(SO(1, 1|p)) given by

LYK =q7' iel0,p—1]

LHE =1 i=01..,p-2

LHE )P =10 (4.1)
LHENE = Mt i=1...,p—1

LHENE = arP™t
where the constants are

p—1
ro=al]M M; = ary —[i —1][i]
i=1
which define the cyclic irreducible representatiortgis/ (2)) (B-type representation) [1, 5].

We would like to find out wher* defines ax-representation. To this aim we introduce
the Hermitian form

(a,b), = T,(a*b) (4.2)
fora, b € A(SO(1, 1]p)) and the linear functional on it

Z;(t"™) = 8, 0mmod p)- 4.3)
Moreover, we see that

et = %(ﬂ" + 77 me [o, pT_l}
are orthogonal with respect to the Hermitian form (4.2):

(e, ef) = £ (ef,ef), =0.

Thus, with the Hermitian form (4.2)-Hopf algebraA(SO (1, 1|p)) is the pseudo-Euclidean
space possessirfg" positive and’;* negative signatures.
The adjoint of a linear operator is defined through

(L*(P)a, b): = (a, (L*($)*D);
whereg € U, (sl(2, R)). Hence, we conclude thatif. are realc* defines a-representation:
(L))" = LH@").
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The linear maff' ¥: A(R,) — A(SL,(2,R)) x A(R,) given by
TOgn-) = (d®sHAG g(n-))

forl € [0, pT*l] defines irreducible representationsSi, (2, R). Infinitesimal form of this
global representation is

RO (p)gm-) = @ @i TV g(n)
whereg € U, (sl(2, R)). We see that

ROE " = iq"™2[1 +m]y

ROE_n— = iq_l_l/z[l — m]nl__’"_l

RO K=" = ¢"n="
where m € [—[,I]. These are non-cyclic representations ©f(s/(2, R)) (A type
representations).

5. The universalT-matrix and irreducible representations of SL,(2, R) at roots of unity

Let the basis elements of the Hopf algebtag) and A(G), respectively,V, and v* lead
to the dual bracketsV,, v*) = 83, which are non-degenerate. Then the univefsahatrix
T € U(g) ® A(G) can be constructed as [13,14]

T=ZVa®v“.

As far as the universdl-matrix is known, one can construct corepresentatiodg 6f) utilizing
representations df (g).
A straightforward calculation leads to the duality brackets

(n—m)

(ELESEMEMKF, 2.2 " " D)) = i g T2 s [m]! [ ]!
Sn,n’8m,m’5s,s’8t,t’8k+n+m,k’ (51)
wheren, m € [0, p — 1]. Therefore, the universdl-matrix can be written as

r=1 - _p—m  PMapm

T = @ 16:®nu—if-®- Z ! 2
n,m,k=0 [n]|[m]l

E"E"K* @ n'n™D(k +n +m). (5.2)

Arranging the elements and using the cutgp#xponentials

p—1 qir(r—l)/Z .

— X
r=1 [r]|
the universall’ -matrix can also be written as
T = g i&®n—if @z e';f*‘g’"*eif’@n’D(K, 8) (5.3)
where we introduced

€r = —q*YV2E K1Y

X
e =

1 L —ml -k 1
D(K,S)Z—Zq K"®4d'.
P =0

Using the explicit form (5.3) one can show that
[(x@0)T]- T=1,®1y T -x@%x)T =1, ® 1y. (5.4)
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In general, the-matrix also satisfies
([d® AT = (T ® 1) (d® o) (T ® 14) (5.5)

wheres (F® G) =G ® F, F, G € A(SL,(2, R)), is the permutation operator.

Let us illustrate how one obtains irreducible representatiorsd.gf2, R) by making use
ofthe universal"-matrix (5.2). Letr' ™ : A(SO(L, 1|p)) — A(SO(1,1|p))®A(SL,(2, R)),
be
T()l)a — e*i/j"(£+)®Z+*i/f‘(5—)®z_ eLE)‘(E+)®77+ei_£k(€—)®rl—D([:)» (K), 8)(61 ® 1A) (56)

Because of (5.5) and the irreducibility of the representatibme conclude thal ®a gives a
p-dimensional irreducible representation of the quantum g2, R) in the linear space
A(SO(1, 1] p)). Let us extend the Hermitian form (4.2) to

{[@® F,b®G), = (a,b),F*G (5.7)

whereF, G € A(SL,(2,R)) anda, b € A(SO(1,1|p)). Whenai, are real numbers the
condition (5.4) yields

{(T™a, T™b), = (a, b),14. (5.8)

Thus the irreducible representati@) is pseudo-unitary wheh,. are real.
We can obtain matrix elements of the irreducible pseudo-unitary representations as

DL, =1{t"" ® 1., TV, (5.9)
For some specific values af m we performed the explicit calculations:
Djy = e *rerihes { 1+ ,,24 i ( ﬁ Mj)p’" } (5.10)
= (mh2\ |}

wherep = gn.+n_. Fori # 0, we obtain

p—i—1 _ymj—igim=1/2) ¢ m+i
A peiheze—iA_zo (=D"i"'q N om i
Pio=¢ { 2l + 1] (HM’>p -
m=0 j=1

i—1 i—p i(p— —i m
i —1ymji—pgilp=1)/2—im .
+Z (=D™i'"Pq (1—[ M,-)nf lpm} (5.11)
J

m=0 [m]'[p +tm— l]l i—0

where the definitiorMy = ). is adopted.
The pseudo-unitarity condition (5.8) implies

p—1
(D§,) Db, + Y (D}, D)y, = (1" 1"),14. (5.12)
k=1
Special cases are
p—1
(Dgo)* Dgo + Z(Dék)*Dépfk =14
k=1 (5.13)

p—1
(Déi)*Dép—i + Z(Dl)}i)*D;—kp—i = 14.
k=1
Moreover, we have the addition theorem

p—1
A(Dr)zhm) = ZDi)ltk ® DI)(Lm'
k=0
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6. Regular representation ofS'L,(2, R)

The comultiplication

A A(SL,(2,R)) — A(SL,(2,R)) ® A(SL,(2, R)) (6.1)
defines the regular representationSdf, (2, R) in the linear spacel (SLq(Z, R)) . The right
and left representations &f, (s/(2, R)) corresponding to the regular representation (6.1) are
given, respectively, by

R@F =¢F=Fod
and

LO)F=¢F =¢poF
whereF € A (SLq(Z, ]R)) . Straightforward calculations yield the right representations

Eopl = ig"?[n]n ™t +igY* " [2n]n_n! Eop" = ig Y [n]y"?
E-n" =ig P[]yt Knj=q™"n}

E_n'=0 E_8"=0

B =i(q " g D+ 18" A= 8,00 K8 =4"8"

igt?  , qdf (z+,20) .

E +4y8—) — K =
1+ f(z4,22) [p—l]!ni 0 e =24

and the left representations
Eufl =iq"*?n)sny™  E_nj=iq" Y25 gy
E_yt =ig®?"[n]s™ "t Kul =l
Esa" =0 E«8" =0
E_8" = ig¥* " [2n]n+8" " (8,0 — 1) K§" =q"s"
iqg™t df (z+,2-)
[p—1]! dz.
The right representation of any elemeng U, (s/(2, R)) can be found through the above
relations and making use of the properties
R(#¢") = R($")R(9)
EL(XY)=E.XKY+K 'XE,Y
KXY = KXKY.

Eif(Zh Z—) = nifl(si I%Zi = Z4.

For the left representations similar properties hold.
Although the quantum algebré, (s/(2, R)) at roots of unity possesses three Casimir

elements, and
(K —qg 'K H?
only two of them are independent. Thus, irreducible representatiotig(ef(2, R)) at roots

of unity are labelled by two indices. A method of constructing the irreducible representations
of U, (sI(2, R)) at roots of unity is to diagonalize the complete set of commuting oper&tors

CZE_E++
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C andK on the quantum hyperboloid. Indeed, the matrices (5.10) and (5.11) can be shown to
satisfy

CDjo = arDig iel0, p—1]

£iDjo = (—1)’]7”)&1);0 iel0,p—-1]
E\Djy = Dj;.10 iel0,p—2]
E.D}, 1o =D}

E_D}y= M;Dj;_y iell, p—1]

- A A
E_D}y = aDjy,_y.

Similar constructions can also be done in terms of the left representations.

7. Invariant integral on SL,(2, R) at roots of unity
Recall that the invariant integrd@lon the quantum grou@, is a linear functional on the Hopf
algebrad(G,) which for any element € A(G,) satisfies the left

Zoa=1,7(a) (7.1)
and the right

aoZ =1,7(a) (7.2)

invariance conditions.
The linear functional, on the Hopf algebral (SL, (2, R|p)) given by

Ip(’?ﬁ’?rffsk) = q_18n,p715m,p718k,0(m0d p) (73)

defines the invariant integral on the quantum gréup, (2, R|p). To prove that in fact the
conditions (7.1) and (7.2) are satisfied, we proceed as follows. Sing&,(2,R|p)) is a

finite Hopf algebra it is sufficient to show that (7.1) and (7.2) are satisfied after taking their
dual pairings:

I,(R(@)P) = I,(P)e(¢) (7.4)
I,(L(p)P) =TL,(P)e(¢) (7.5)
for all elementsp € U, (s1(2, R)) andP € A(SL,(2, R|p)). One can show that
T,(Esnin"s) =0 T,(Kn'n"s*) = Z,(nin"s") (7.6)
T(Esnin™8) =0  I,(Knin"8*) =I,(nin"s"). (7.7)

Moreover, for any two elemenis, ¢, right and left representation satisfy the relations
I,(R($192) P) = €(9162)Z,(P)
Ip(L(192) P) = €(9192) L, (P).

Therefore, (7.4) and (7.5) are satisfied. This leads to the conclusion that (7.3) is the invariant
integral onSL, (2, R|p).
Observe that

I,(P*)=1Z,(P) (7.8)
and define the Hermitian forif, -),, on the quantum groufL, (2, R|p) as
(P, Q)p =I,(PQO"). (7.9)
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The basis elements;, (3.19) ofA(Ctgl’l)) are orthonormal in terms the above form:
(> €nm)p = 8w S (> €pm)p = O.
Any elementr e A(C(“)) can be represented as

T = Znnmenm + Znnm nm (7'10)

whererf e C andn, m take values in the domain (3.20). Then, the norm of

(7= D Ty — D T T (7.11)
nm

nm

shows that the metric of the spa¢eC") possesseléf;—1 positive and”zz—*1 negative signatures.

We should also define invariant integral on the translation subgroup for being able to obtain
iton SL,(2, R).

Let Cgo(Rz) be the space of all infinitely differentiable functions with finite support in
R?. The linear functional ol $° (R?):

.(f) = / deadz_ f(zer ). (7.12)

where f € C3°(R?), is clearly the invariant integral on the translation group satisfying

(Ic ® |d)(€< <& éc)(f) = Zc(f) (ld ® Ic)(éc <& Ec)(f) = Zc(f)- (713)
Let Ag(SL,(2, R)) be the subspace @f(SL,(2, R)) defined as

Ao(SL,(2,R)) = CSO(RZ) x A(SL,(2,R|p)) (7.14)
andZ, be the linear functional acting on it as
Iu)(F) = Zzp(Pn)Zc(fn) (715)

whereF =3 P,f,andf, € CgO(RZ), P, € A(SL,(2,R|p)). Let us prove that,, is the
invariant integral omo(SL, (2, R)). On an elemen& = P f we have

T o G = (ld @ Z,) A(P)A(f). (7.16)
One can observe from (3.14) that any functjb() evaluated at = zo can be written as

F @z =8 0 8:(f(2)).
Hence, (7.16) yields
Iw o G = (id @ Zy){A(P)[& 0 Ec(f) + ek 0 E(fL) + e 0 E(fL) + crc_bc 0 E(FID]}.

by making use of (3.10). Moreover, the properties of the invariant integrals (7.3), (7.12) and
(7.15) permits us to write

Iw oG = I]J(P)IL(f) + (ld ® Zp){A(P)[C*'Ic(f-:-) + C—Ic(fi) +cic_, Zc(f;-/_)]} (717)
Becausef € C5°(R?), we have

f . d?f
Te(g, ) =Tlg 3 =0 (7.18)
Hence,
T, 0 G = I,(P)I.(f) = T,(G) (7.19)

which together with the linearity of the functiond), implies
Ty o F =1,(F) forany F e Ao(SL,(2, R)). (7.20)
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The right invariance condition can be proved similarly. Therefdeis the invariant integral
on the quantum grougiL, (2, R) at roots of unity.
Let us introduce the bilinear form

(F,G)y =TI,(FG") (7.22)
whereF, G € Ao(SL,(2, R)), which is Hermitian because

T, (F*) = T, (F). (7.22)
Consider the subspace A5(SL,(2, R))

Ao(HMY) = C°(R?) x ACH) (7.23)
whose arbitrary elemeri can be written as

X= " fonlrn D Fomom (7.24)

nm

wheree are given by (3.19) in the domain (3.20). We then have

XX =D Telf Fri) = 9 Lelfom frm)- (7.25)

nm

Thus,Ao(Hq(l’l)) endowed with the Hermitian form (7.21) is a pseudo-Euclidean space.
The comultiplication

A Ag(HMD) — Ao(SLy(2.R)) ® Ag(HMY)

defines the left quasi-regular representatiors 6f, (2, R) in Ao(Hq(“)). Let us extend the
Hermitian form(, ), to{, }, by setting

(FRX,GRY},=FG*'(X,Y)y
whereF, G € Ao(SL,(2,R)) andX, Y € Ao(H*Y). We have
{AX), AN}y = 1a(X, Y)y (7.26)

which implies that the left quasi-regular representation is pseudo-unitary.
Foranyp € U, (sl(2, R)) andF € Ao(SL, (2, R)) the duality brackets satisfy the property

(9%, F) = (¢, (S(F))")
which together with the pseudo-unitarity condition (7.26) implies
(R()X, Yy = (X, R()Y ).

Thus, the antihomomorphis® : U, (s/(2, R)) — LinAo(H(;“)) given in section 6 defines
the x-representation of the quantum algebra in the pseudo-Euclidean 4pagée-L).

Note that the matrix elements of the pseudo-unitary irreducible representations (5.10),
(5.11) satisfy the orthogonality condition

(Do, DAYy = 80 — X)8 (ke — ) NySpm 0(modp)

whereN,, are some normalization constants.
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